Modelling of 4D Seismic Data for the Monitoring of the Steam Chamber Growth during the SAGD Process

O. Lerat, F. Adjemian, A. Auvinet, A. Baroni, E. Bemer, R. Eschard, G. Etienne, G. Renard & G. Servant

E. Bathellier, L. Michel, S. Rodriguez, & F. Aubin

T. Euzen
Introduction

SAGD: Steam-Assisted Gravity Drainage

Fluvial/estuarine reservoirs are not homogeneous

Impact on the steam chamber development?
Introduction

4D seismic (Ex: Christina Lake)

Map views of 4D seismic amplitude difference

Steam injection

- reduction of viscosity and mobility ratio
- but also: rock and fluid expansion, compaction, oil vaporization,…

between 2001 and 2004 surveys

between 2001 and 2005 surveys

Zhang et al., 2005
What is SeisMovie™?

- SeisMovie records a « movie » of production
- Permanent network of buried sources and receivers
- High repeatability: tiny changes in reservoir can be measured
- Continuous signal monitoring to observe short period variations
- A wide range of applications
 - Steam and water injection
 - Gas storage
 - CO2 disposal
 - Environmentally sensitive areas
Introduction

Project objectives

- Imaging of the steam chamber evolution from 4D seismic data at early times of SAGD steam injection phase
- Improvement of the interpretation of SeisMovie™ surveys in heavy oil and bitumen production
- Improvement of the understanding of physical laws driving the petro-elastic model during steam injection
- Develop a workflow for the interpretation of 4D seismic data, based on a real field case
Workflow

1. Construction of the full-field static model
2. Reservoir-geomechanics coupled modeling
3. Seismic modeling and sensitivity tests
Illustration on a synthetic case

1. Construction of the full-field static model
 Geological model and static properties

2. Coupled modeling
 Reservoir simulation (PumaFlow)
 Geomechanical modeling (Abaqus)

3. Seismic modeling
 Impact of thermal production on PEM (petroelastic model)
1- Construction of the full-field static model

→ Geological model and static properties
Hangingstone Field

- Athabasca region (Alberta, Canada)
- McMurray Formation
- Oil viscosity 1,000,000 cp (@ reservoir condition)
- Oil density 8° API
- 16 horizontal well pairs
- 50 vertical observation wells
- 10 cored wells
- Production data (90 months)

All public data
Well Log Interpretation

McMurray Fm.

- Lithofacies 1
- Lithofacies 2
- Lithofacies 3
- Lithofacies 4
- Lithofacies 5

- Open bay shales
- Stacked tidal flats, Channels and bars
- Tidal ravinement
 Stacked meandering channels
 With tidal influence
- Amalgamated fluvial Braided channels
- Channel belt incision
 Coastal plain?
- Base Cretaceous unconformity

0, Aberdeen, Scotland
Geostatistical Simulation of Facies Distribution

- 5 lithofacies
- Method: Truncated Gaussian
- 90 layers
- X,Y: 10m x 10m
- Z: 0.5m
- 5.10^6 cells
2. Coupled modeling

- Reservoir simulation (PumaFlow)
- Geomechanical modeling (Abaqus)
Properties exported to the reservoir model
Very fine reservoir grid (235,000 cells):
X: 10x2.5m; 50x1m; 10x2.5m
Y: 41x20m
Z: 61x0.5m; 5x1m; 5x2.5m
Block size 900m x 100m x 320m
Operating conditions in the wells for SAGD modeling

- Warm up phase
 - Four months @ constant T = 220°C
- Steam injection: up to 6 years
 - Real injection-production history at wells
 - Steam trap control implemented
Field data: (flow rates)
Production history of E well pair

![Graph showing steam and oil+water production over time from start of steam injection.](graph.png)
Oil & Water production in the E well pair producer

Cumulative oil production (m³)

- Field data
- Simulation

Time from start of steam injection (days)

Reservoir simulation with PumaFlow

6 Years
% of steam rate along the injector

Grid section number

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

heel to toe

5 days
10 days
30 days
61 days
92 days
122 days
183 days

% of steam rate injected

0 1 2 3 4 5 6 7 8 9 10 11 12

IEA Collaborative Project on EOR – 31st Annual Workshop and Symposium – 18-20 October 2010, Aberdeen, Scotland
Impact of the shale mechanical behavior on the geometry of the steam chamber

Shales remain a barrier
One-way coupling

Explicit coupling
(update of permeabilities)
Shales can reach rupture
Negative thermal expansion coefficient

⇒ Yielding of shale materials

Temperature in section 5

One-way Coupling

Temperature field is stopped by the shale inclusion

Explicit Coupling

Temperature field goes through the shale inclusion
Negative thermal expansion coefficient

Yielding of shale materials

Pore Pressure in section 5

One-way Coupling

Strong overpressure above shale breaks: T is high, oil expands but can not be produced

Explicit Coupling

Homogeneous over-pressure as for clean sections
Update of the petroelastic model

Materials
Temperature
Pore Pressure
Effective Stress

6 Months
3- Seismic modeling

Impact of thermal production on PEM (petroelastic model)
Velocities and impedance calculation

Geomodeler (Geometry, Parameters...)

Reservoir modeling
- input: $\text{visco}(T)$
- output: P, T, S

Geomechanical modeling
- input: P, T
- output: $\sigma_{\text{eff}}, \phi$

Fluid parameters
- $K_{fl} = f(P, T, S)$
- $G_{fl} = f(P, \text{visco}(T), S)$
- $\rho_{fl} = f(P, T, S)$

Grain parameters
- ρ_{gr}
- K_{gr}
- G_{gr}

Incompressibility & shear modulus
- $K_{nd} = f(K_{d}, K_{gr}, K_{fl}, \phi)$
- $G_{nd} = f(G_{d}, G_{gr}, G_{fl}, \phi)$

Drained Modulus
- $K_{d} = f(\sigma_{\text{eff}})$
- $G_{d} = f(\sigma_{\text{eff}})$

Density
- $\rho = \rho_{gr} \ast (1 - \phi) + \rho_{fl} \ast \phi$

P and S wave seismic velocities
- $V = f(K_{nd}, G_{nd}, 1/\rho)$

Acoustic impedance & reflectivity
1D seismic modeling (reservoir zone):
Lithofacies (top), reflectivity coefficients convolved by a 80 Hz Ricker (bottom)
Synthetic Seismograms in time

At the initial stage and after 6 months of production

1D convolution, Ricker - 80 Hz

March 2000

January 2001

500 m
Horizontal slices of P-wave at the injection well (depth -314.5m)

P-wave seismogram difference $t-t_0$

Difference of amplitude with the base survey at initial time after depth conversion:
- 2-1: end of warm-up
- 3-1: 1st month of prod.
- 4-1: 2nd month of prod.
- 5-1: 4th month of prod.
- 6-1: 6th month of prod.
SAGD Model after 3 Years of Production

- Lithofacies distribution
- Oil saturation
- P-wave seismogram
Conclusions 1/2

- Fully integrated study from static to dynamic modeling
 - Geology, petrophysics, geomechanics, petroacoustics
- Simulations of full production history
 - Steam rate satisfied in the injector
 - Oil and water rate satisfied in the producer
 - Proportion of oil and water respected
 - Lateral steam connection between sections is taken into account
Conclusions 2/2

- Impact of heterogeneities on steam chamber development
 - Influence of shale beds on the steam chamber development is clear on 3D visualizations
 - Mechanical behavior of shales needs to be further characterized

- Seismic modeling
 - Petroelastic modeling shows realistic images
 - Model updates according to dynamic properties evolution

- Monitoring
 - Improved understanding expected through Seismmovie interpretation

- Further work: integration of the real seismic data